1.txt
把后缀改成bat,双击激活
import os
import zipfile
def DecompressionZip(InputDir,OutputDir):
for file in os.listdir(InputDir):
FilePath = InputDir + "/" + file #读取压缩文件目录
os.makedirs(OutputDir+"/" + file ) #根据文件名创建目录
for A in os.listdir(FilePath):
FilePath1 = FilePath + "/" + A #得到子文件列表
if os.path.splitext(FilePath1)[1]=='.zip': # 筛选压缩文件为“.zip”
#解压文件
zip_file = zipfile.ZipFile(FilePath1,'r') #获取压缩文件中的列表
for names in zip_file.namelist(): #依次解压
zip_file.extract(names,OutputDir+"/" + file)
zip_file.close() #关闭数据流
InputDir = r"input_dir"
OutputDir = r"output_dir"
DecompressionZip(InputDir,OutputDir)
- 源码
#倒入相关包
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.optimizers import SGD
from keras import regularizers
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from keras.callbacks import ModelCheckpoint
import os
import numpy as np
import tensorflow as tf
import tensorflow.keras
import pandas as pd
import cv2
import skimage
import skimage.io
import skimage.transform
canny算子处理流程
1.进行高斯滤波,平滑图像,滤除噪声;
2.计算图像每个像素点的梯度强度和方向;
3.应用非极大值(Non-Maximum Suppression)抑制,用以消除边缘检测带来的杂散效应;
4.应用双阈值(Double-Threshold)检测来确定真实和潜在的边缘;
5.通过孤立弱边缘来完成最终的边缘检测。
Canny算子边缘检测